

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

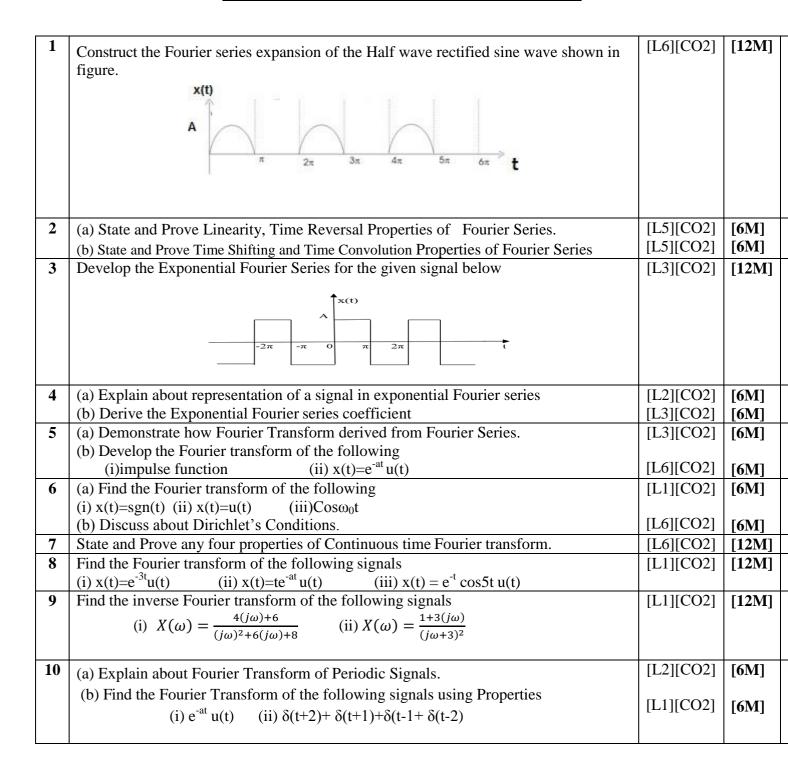
OUESTION BANK (DESCRIPTIVE)

Subject with Code: Signals, Systems and

Random Processes (19EC0403)

Year & Sem: II-B.Tech & I-Sem

Course & Branch: B.Tech - ECE


Regulation: R19

UNIT –I INTRODUCTION TO SIGNALS AND SYSTEMS

1	(a) Define various elementary signals and indicate them graphically	[L1][CO1]	[6M]
	(b) Find the Even and Odd Component of the signals below	[L3][CO1]	[6M]
	(i) $x(t)=e^{j2t}$ (ii) $x(n)=\{-3,1,2,-4,2\}$		
2	What are the basic operations on signals? Illustrate with an example.	[L1][CO1]	[12M]
3	Explain the classification of signals in both continuous time and discrete time with suitable examples.	[L2][CO1]	[12M]
4	 (a) Find which of the signals are causal or non-causal. (i) x(t)= e^{2t} u(t-1) (ii) x(n)=u(n+4)-u(n-2) (b) Sketch the following signals 	[L3][CO1]	[6M]
	(i) $x(t)=2 u(t+2)-2 u(t-3)$ (ii) $x(t)=r(t)-r(t-1)-r(t-3)+r(t-4)$	[L3][CO1]	[6M]
5	Find whether the following signals are periodic or not? If periodic, determine the fundamental Period. (a) sin 12πt (b) sin (10t+1)- 2cos (5t-2) (c) e ^{j4πt}	[L3][CO1]	[12M]
6	Determine whether the following signals are energy signals or power signals. Calculate their energy or power? (i) $x(t)=8 \cos 4t \cos 6t$ (ii) $x(t)=e^{j[3t+(\pi/2)]}$ (iii) $x(n)=(1/2)^n u(n)$	[L3][CO1]	[12M]
7	Define a system. How are systems classified? Define each one of them with examples	[L1][CO1]	[12M]
8	Check whether the following system is (a) Static or dynamic (b) Linear or Non- Linear (c) Time invariant or time variant $d^3y(t)/dt^3 + 2d^2y(t)/dt^2 + 4dy(t)/dt + 3y^2(t) = x(t+1)$	[L2][CO1]	[12M]
9	Interpret whether the following systems are Static or dynamic, Linear or Non- Linear and Time invariant or time variant (a) $y(n) = \log_{10} x(n) $ (b) $y(t) = at^2 x(t) + bt x(t-4)$	[L2][CO1]	[12M]
10	(a) Discuss about Energy and Power signals.	[L6][CO1]	[6M]
	(b) Determine whether the following systems are stable or not. (i) y(t)= (t+5) u(t) (ii) h(n)=a ⁿ for 0 <n<11< th=""><th>[L3][CO1]</th><th>[6M]</th></n<11<>	[L3][CO1]	[6M]

UNIT –II

FOURIER SERIES AND FOURIER TRANSFORM

UNIT –III SIGNAL TRANSMISSION THROUGH LINEAR SYSTESMS

1	(a) Explain the Filter characteristics of linear systems and explain with neat diagrams	[L2][CO3]	[6M]
	(b) Define the following (i)Impulse Response (ii)Step Response (iii) Response of	[L1][CO3]	[6M]
	the System	. 1. 1	
2	(a) Derive the Transfer function and impulse response of an LTI system.	[L3][CO3]	[6M]
	(b) Define Linear time variant, Linear time-invariant, step response of the system.	[L1][CO3]	[6M]
3	Discuss the properties of linear time invariant systems.	[L2][CO3]	[12M]
4	(a) Consider a stable LTI System characterized by the differential equation	[L3][CO3]	[6M]
	dy(t)/dt+2y(t)=x(t), Find its impulse response.		
	(b) Discuss the Flowing (i) Linear Shift Invariant systems (ii) Transfer Function	[L2][CO3]	[6M]
5	Consider a causal LTI system with frequency response $H(\omega)=1/4+j\omega$, for a input $x(t)$,	[L4][CO3]	[12M]
	the system is observed to produce the output $y(t)=e^{-2t}u(t)-e^{-4t}u(t)$. Find the input $x(t)$.		
6	Consider a stable LTI system that is characterized by the differential equation	[L4][CO3]	[12M]
	$d^2y(t)/dt^2+4dy(t)/dt+3y(t)=dx(t)/dt+2x(t)$ find the response for an input $x(t)=e^{-t}u(t)$.		
7	(a) State and prove the time convolution theorem with Fourier transforms.	[L6][CO4]	[6M]
	(b) State and prove the frequency convolution theorem with Fourier transforms.	[L6][CO4]	[6M]
8	(a) Explain the properties of convolution.	[L2][CO4]	[6M]
	(b) Find the convolution of the signals, $x_1(t) = e^{-2t} u(t)$, $x_2(t) = e^{-4t} u(t)$	[L3][CO4]	[6M]
9	(a) Explain the procedure to perform convolution Graphically.	[L2][CO4]	[6M]
	(b) Examine the convolution of the following signals by graphical method	[L4][CO4]	
	$x(t)=e^{-3t} u(t)$ and $h(t)=u(t+3)$		[6M]
10	(a) The impulse response of a continuous-time system is expressed as $h(t)=e^{-2t}u(t)$.	[L3][CO3]	[6M]
	Find the Frequency response of the system		
	(b) Define the Following Properties of LTI System	[L1][CO3]	[6M]
	(i) Distributive Property (ii) Associative Property		

UNIT –IV LAPLACE TRANSFORMS AND INTRODUCTION TO PROBABILITY

1	State and prove the any four Properties Laplace Transform	[L6][CO5]	[12M]
2	(a) Determine the Laplace transform of the signal $x(t) = e^{-at} u(t) - e^{-bt} u(-t)$ and also find its ROC	[L5][CO5]	[6M]
	(b) Find the Laplace transforms and region for the following signals (i)x(t)= e^{-5t} u(t-1) (ii) x(t)= $e^{-a t }$	[L1][CO5]	[6M]
3	Determine the Laplace transform of the following signals using properties of Laplace transform	[L5][CO5]	[12M]
	(i) $x(t)=t e^{-t} u(t)$ (ii) $x(t)=t e^{-2t} \sin 2t u(t)$		
4	Illustrate the inverse Laplace transform of the following	[L3][CO5]	[12M]
	$(i)X(s) = 1/s(s+1) (s+2) (s+3)$ $(ii) X(s)=s/(s+3)(s^2+4s+5)$		
5	(a) Discuss about the Linearity, Time Shifting and Time Reversal Properties of Laplace	[L2][CO5]	[6M]
	transform. (b) Explain the Laplace transform for any 3 standard signals.	[[5][CO5]	[
		[L5][CO5]	[6M]
6	Define the following with examples i. Sample space ii. Event	[L1][CO6]	[12M]
	iii. Mutually exclusive events. iv. Independent events		
7	Explain about Joint and Conditional probability and also state the properties of Joint &	[L2][CO6]	[12M]
	Conditional Probability.	. 3	- 1
8	(a)Explain the concept of random variable	[L2][CO6]	[6M]
	(b) Examine the distribution function $F_{xx}(x,y)$		
	(\mathbf{V},\mathbf{V}) $(0,0)$ $(1,2)$ $(2,2)$ $(2,2)$	[L1][CO6]	[6M]
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
9	(a)Explain the probability distribution and density functions.	[L2][CO6]	[6M]
_	(b) A random variable X has a pdf		[OIVE]
	$f_{x}(x) = \int C(1-x^{4})$ -1 <x<1< th=""><th>[L3][CO6]</th><th>[6M]</th></x<1<>	[L3][CO6]	[6M]
	Otherwise		
	Determine it 'C'		
10	Let X is a continuous random variable with density function	[L3][CO6]	[12M]
	$f_X(x) = \begin{cases} x/9 + k & 0 < x < 6 \\ 0 & \text{Otherwise} \end{cases}$		
	i) Find 'k' ii) Find p[2 <x<5]< th=""><th></th><th></th></x<5]<>		
	$1/1 \text{ mag K} \qquad 1/1 \text{ mag p}[2 \times A \times J]$		

UNIT -V RANDOM PROCESSES

1	Define Auto Correlation Function. State and explain any four properties of ACF.	[L2][CO6]	[12M]
2	Explain about first order, second, wide-sense and strict sense stationary process.	[L3][CO6]	[12M]
3	(a)Show that the autocorrelation function of a stationary random process is an even function	[L2][CO6]	[6M]
	of τ .		
	(b) Explain the classification of Random Processes.	[L2][CO6]	[6M]
4	What is cross correlation function of a random process? State and explain any four	[L1][CO6]	[12M]
	properties of cross correlation function of a random process.		
5	Prove the following (i) $ R_{xx}(\tau) \le R_{xx}(0)$	[L6][CO6]	[12M]
	(ii) R_{xx} (- τ)= R_{xx} (τ) (iii) R_{xx} (0) = $E[X^2(t)]$		
6	Explain Distribution and Density function of a Random Process.	[L2][CO6]	[12M]
7	(a) Explain the concept of power spectral density.	[L2][CO6]	[6M]
	(b) Discuss the properties of power spectral density.	[L6][CO6]	[6M]
8	(a)Briefly explain the concept of cross power density spectrum.	[L2][CO6]	[6M]
	(b)Discuss the properties of cross power density spectrum.	[L2][CO6]	[6M]
9	(a) Briefly explain the concept of Random process.	[L2][CO6]	[6M]
	(b) Prove that the PSD of the derivative $X(t)$ is equal to ω^2 times the PSD of $Sxx(\omega)$.	[L6][CO6]	[6M]
10	(a) If the PSD of $x(t)$ is $Sxx(\omega)$. Find the PSD of $dx(t)/dt$.	[L3][CO6]	[6M]
	(b) The power spectral density of a stationary random process is given by	[L3][CO6]	[6M]
	$Sxx(\omega) = \begin{cases} A & ; & -k < \omega < k \\ 0 & ; & otherwise \end{cases}$ Find the auto correlation function.		
	the auto correlation function.		

Prepared by:

1. A. RAJASEKHAR YADHAV Assoc.Professor 2. C.PRASAD Asst.Professor 3. V.R. CHANDHINI Asst.Professor